Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Entropy (Basel) ; 24(5)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1875520

ABSTRACT

The accurate prediction of gross box-office markets is of great benefit for investment and management in the movie industry. In this work, we propose a machine learning-based method for predicting the movie box-office revenue of a country based on the empirical comparisons of eight methods with diverse combinations of economic factors. Specifically, we achieved a prediction performance of the relative root mean squared error of 0.056 in the US and of 0.183 in China for the two case studies of movie markets in time-series forecasting experiments from 2013 to 2016. We concluded that the support-vector-machine-based method using gross domestic product reached the best prediction performance and satisfies the easily available information of economic factors. The computational experiments and comparison studies provided evidence for the effectiveness and advantages of our proposed prediction strategy. In the validation process of the predicted total box-office markets in 2017, the error rates were 0.044 in the US and 0.066 in China. In the consecutive predictions of nationwide box-office markets in 2018 and 2019, the mean relative absolute percentage errors achieved were 0.041 and 0.035 in the US and China, respectively. The precise predictions, both in the training and validation data, demonstrate the efficiency and versatility of our proposed method.

2.
Curr Pharm Des ; 2020 09 09.
Article in English | MEDLINE | ID: covidwho-1378152

ABSTRACT

The article has been withdrawn by the editorial office of the journal Current Pharmaceutical Design, due to major linguistic inconsistencies.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

3.
Sci Rep ; 11(1): 8412, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1189290

ABSTRACT

A reasonable prediction of infectious diseases' transmission process under different disease control strategies is an important reference point for policy makers. Here we established a dynamic transmission model via Python and realized comprehensive regulation of disease control measures. We classified government interventions into three categories and introduced three parameters as descriptions for the key points in disease control, these being intraregional growth rate, interregional communication rate, and detection rate of infectors. Our simulation predicts the infection by COVID-19 in the UK would be out of control in 73 days without any interventions; at the same time, herd immunity acquisition will begin from the epicentre. After we introduced government interventions, a single intervention is effective in disease control but at huge expense, while combined interventions would be more efficient, among which, enhancing detection number is crucial in the control strategy for COVID-19. In addition, we calculated requirements for the most effective vaccination strategy based on infection numbers in a real situation. Our model was programmed with iterative algorithms, and visualized via cellular automata; it can be applied to similar epidemics in other regions if the basic parameters are inputted, and is able to synthetically mimic the effect of multiple factors in infectious disease control.


Subject(s)
COVID-19/diagnosis , Models, Theoretical , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Prognosis , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology , Vaccination/psychology
4.
Front Public Health ; 9: 616963, 2021.
Article in English | MEDLINE | ID: covidwho-1106063

ABSTRACT

Background: This study was to collect clinical features and computed tomography (CT) findings of Influenza-Like Illness (ILI) cases, and to evaluate the correlation between clinical data and the abnormal chest CT in patients with the Influenza-Like Illness symptoms. Methods: Patients with the Influenza-Like Illness symptoms who attended the emergency department of The Six Medical Center of The PLA General Hospital from February 10 to April 1, 2020 were enrolled. Clinical and imaging data of the enrolled patients were collected and analyzed. The association between clinical characteristics and abnormal chest CT was also analyzed. Results: A total of 148 cases were enrolled in this study. Abnormalities on chest CT were detected in 61/148 (41.2%) patients. The most common abnormal CT features were as follows: patchy consolidation 22/61(36.1%), ground-glass opacities 21/61(34.4%), multifocal consolidations 17/61(27.9%). The advanced age and underlying diseases were significantly associated with abnormal chest CT. Conclusions: Abnormal chest CT is a common condition in Influenza-Like Illness cases. The presence of advanced age and concurrent underlying diseases is significantly associated with abnormal chest CT findings in patients with ILI symptoms. The chest CT characteristic of ILI is different from the manifestation of COVID-19 infection, which is helpful for differential diagnosis.


Subject(s)
COVID-19 , Diagnosis, Differential , Influenza, Human/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Aged, 80 and over , China , Female , Humans , Image Interpretation, Computer-Assisted , Influenza, Human/physiopathology , Male , Middle Aged , Multivariate Analysis , Radiography, Thoracic , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL